
International Journal of Management, IT & Engineering
 Vol. 13 Issue 03, March 2023,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

35 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Reduce IT Operations Cost by Modernized Automation

Sudhansu Sekhar Behera

Enterprise Architect & Program Manager

Tata Consultancy Services, USA

ABSTRACT
Purpose of this research work is to demonstrate the use of IT capabilities (along with coding samples) to

reduce IT Operations Cost (a.k.a. OpEx) for major industries. Although the technologies explained in this

paper are with Azure, Python, Kubernetes and Unix Shell script, once read the article, it will give a broader

insight into enabling the Operation Automation regardless of the technologies used by any Software

Application. This research concludes dramatic results in OpEx reduction and beyond.

This paper talks about reducing the “eyes-on-glass” monitoring effort, alerting the stakeholders for a possible

catastrophe and thereby automating an executive notification. This research also includes an example

scenario on restoring a catastrophe without human intervention.

Keywords: OpEx Reduction, Operational Expense, Monitoring and Alert, IT Operation Process Automation

INTRODUCTION
In an attempt to capture the market demand and to enhance the User & Customer experiences, major

industries embody new features and capabilities using modern technologies in Cloud and beyond.

While the Product Owners pump in new features, the Engineering/Build team enjoy delivering the features in

Agile methodologies under the blessings of Sponsor (as depicted in Figure-1) without predicting the

Operational Costs on a longer run. Since there’s no linear Cost equation or correlation between IT

development and Operations costs, any expert estimation sounds far-fetched until after the hindsight.

While the sponsors take conscious decisions during the build phase, the aftermath of Operations cost

(depicted in Figure-2) implications are oftentimes squirrelled away.

Figure-2

 ISSN: 2249-0558 Impact Factor: 7.119

36 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Since the Operations Cost consideration is a major deterrent for funding large transformational programs or

new program initiatives, it is imperative to explore options to automate manual IT Operations and there by

substantially reduce the OpEx of the organizations as a whole.

METHODOLOGY
This research primarily focuses on reducing below (not limited to) IT Operations cost by automation:

 Eyes-on-Glass monitoring transactional failures

 System failures including performance degradation, downtime and unavailability

 KPI and Control Reporting

 Alerting stakeholders

 Application Restoration (Healing)

Methods applied in this paper considers a use case of an organization that has built applications on Azure

Cloud PaaS platform equipped with Kubernetes, transmitting data into and from Cosmos database.

Eyes-on-Glass Monitoring

IT Production/Operations Support teams typically comprise of engineers deployed 24x7 constantly and

literally keeping an eye in front of computer screens gauging the transaction flows, specially watching out for

red flags, or Customer complaints, business notifications around inabilities performing certain business

transactions, Customer service telephone calls and/or email notifications.

Modeling section of this paper talks about avoiding/minimizing such notifications/Customer complaints by

proactively restoring such situations even before they come to the notice of business users or Customers.

Systemic failures

Generally during peak business hours due to heavy traffic, computing systems’ performance degrades, or the

intensive use of computing resources cause CPUs shoot beyond 100% usage that brings the systems to a

dead-lock situation.

During non-peak business hours, certain upstream or downstream systems perform maintenance activities

such as system upgrade or patch upgrade causing downtime.

Such situations necessitate Operations engineers manually intimate the business users to wait until

restoration.

KPI & Control Reporting

It’s the job of Production Support teams to regularly (frequency can be hourly or daily) report the Key

Performance Indicators (KPI) to Business Stakeholders to find possible pitfalls in applications and

subsequently address the scope of improvement.

Specific Controls are also fed by Operations engineers to measure major bottlenecks e.g. waiting time during

UI navigation, processing delay, number of retries and rage-clicks manifesting users’ frustration.

Due to lack of utilities or tools, traditionally Operations engineers perform these activities manually which

can be easily automated by simple solutions (refer Modeling Section)

Alerting

Monstrous applications comprise of countless moving parts such as Micro-services, APIs, API Gateways,

Database tables/Collections, Message Queues along layers of integrating mechanism to connect with

upstream and downstream systems including third party vendor systems.

Most commonly Production Support Engineers falls at bay because of the fact that it’s humanely impossible

to closely look at each of the moving parts and momentarily restore them.

It is possible to automate the alerting mechanism not only to notify the operations engineers, but also tag the

severity of the alerts depending up on the degree and volume of failures such as informing, alarming, or

catastrophic failures.

Application Restoration

Almost all the applications, in today’s world, are housed in clustered servers to evenly distribute the

inbound/outbound traffic across multiple computing units.

 ISSN: 2249-0558 Impact Factor: 7.119

37 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Upon failure of certain cluster nodes, most frequently, Operations Support engineers bring down the severed

cluster to divert the traffic to healthy nodes. Once the problematic nodes calm down, they reboot the nodes to

bring them back to life for serving the transactions as usual.

Such is the case for even containerized systems where multiple instances of java objects or micro-services

serve the same purpose. In such cases, the effected instances (also known as PODs or containers) are brought

down to divert the traffic.

While traditionally the Operations support engineers manually perform these activities, they can be

automated for restoration without manual intervention.

MODELING AND ANALYSIS
The regular activities that came out of this research methodology are considered the potential candidates for

modeling automation. However, there are unforeseen catastrophes or failures which essentially need human

intervention and restoration which are excluded in the analysis.

Failure Alert and Self-Heal

Applications conventionally throw specific error codes into the container/server logs in the event of

transactional failures. Additionally, Azure Kubernetes Servers also logs system unavailability error codes

along with Azure Application Insights has out-of-the-box “smart detection” feature to flag downtime and

critical failures at server/hardware/network level.

Alerts can be established by feeding Kusto Queries (KQL) results into Azure Alert utilities as

shown in below example, where it lists the problematic POD instances for a given error.

The basic pseudo code in Kubectl can be designed as below where it kills the POD instance that throws error.

While traverse through all the POD-A instances for a given Micro-service {

do {

if { POD-A instance throws ERRCODE-1 }

restart all the POD-A instances

else if { POD-A instance throws ERRCODE-2 }

 kill this particular POD-A instance

else if { POD-A instance throws ERRCODE-3 }

 do something else

else if { POD-A instance throws ERRCODE-4 }

 do a rolling restart of POD-A

else if { POD instance throws ERRCODE-5 }

 do a rolling restart of POD-B and then rolling restart of POD-A

}

}

Below sample code assumes the kubernetes PODs are configured as horizontal auto-scaling to maintain

minimum number of POD instances. Once the POD instance is killed, a new instance gets created on it’s

own due to auto manifestation as defined in horizontal auto-scale configuration.

 ISSN: 2249-0558 Impact Factor: 7.119

38 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

KPI and Control Reporting

Python has abundance of libraries that can connect with any system that are deployed in recent age. In this

model, the python utilities connect with Azure Kubernetes clusters, connect to Cosmos for data feed and also

look at message counts and dead letters that fall in Azure Service Bus. While figure-4 depicts a few Azure

components, they can be extended further to much more such as Azure Databricks or API Manager or Azure

SQL DB and many more.

Shell scripts or Bash scripts can be then designed to invoke python programs and subsequently scheduled

CRON jobs to periodically report the data points to required email distribution lists. The data points can

further be enhanced programmatically to produce an executive level report for producing summarized tables.

Figure-4

Below python code sample fetches data from Azure Cosmos database collection and print into

console.

A separate shell script can be written to call below python script for data manipulation,

transformation, summarization and emailing to specific user groups for reporting.

 ISSN: 2249-0558 Impact Factor: 7.119

39 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

RESULTS AND DISCUSSION

This research has taken two Transformation Programs (TP) as subject of study where, TP-B is 10 times larger

than TP-A. For assessing a comparative analysis, TP-B is enabled automation of IT Operations while TP-A

continued supporting in a conventional way.

 TP-A TP-B

Component Size 7 Units 80 Units

IT Operations Effort (Persons)Without Automating Project B 40 315

IT Operations Effort (Persons) After Automating Project B 40 35

Customer Complaints High Escalations Negligible

Ops Engineer Job Satisfaction Very Poor Excellent

Major Incidents Reported (in a month) 12 0

No of Command Center calls (in a month) 18 2

It was observed for period of 8 months after automating mundane and routine tasks which gave a dramatic

results – not only a substantial reduction of team size and cost, but the program saw psychological changes in

engineers in terms of job satisfaction and attrition. Even the program leadership witnessed significant decline

in customer escalations and Command Center calls.

On top of that, since the operations support could focus on mission critical problem incidents, the restoration

delay is seen reduced substantially from several days to few hours.

Upon empowering the operations support engineers with latest tech skills such as KubeCtl, Python and shell

scripting, the team developed many utilities on their own during their free time which further reduced the

SLA (Service Level Agreement) delays.

Proactive monitoring helped team flag issues up front before they came to the notice of Business

stakeholders. Timely engagement of third party vendors and emphasizing on issue avoidance in future also

added to the advantages of Operations automation.

CONCLUSION
Having witnessed noticeable and tangible outcome after the research work, it is concluded that automation of

IT Operations brings following benefits to organizations.

 Substantial Operational Cost reduction by about 70-80%

 Reduction in Customer Complaints

 ISSN: 2249-0558 Impact Factor: 7.119

40 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 Job Satisfaction and Behavioral improvements in Operations Engineers

 Reduction in occurrence of incidents

 Reduction in attrition

 Reduction in Command Center calls, thereby reduced governance Cost

 Increased focus on mission critical failures

 Empower Operations team for more automation of mundane tasks

RECOMMENDATION

Since Operational Cost consideration has a detrimental effect on deliberating new Program initiatives and

transformational programs, it’s advisable to embrace recommended automation methods during and after

completion of build phases.

Here are few key considerations that will effectively improve the IT Operations with reduced ongoing cost on

a longer run.

 Make frequently handled operating procedures as potential candidates for automation

 Consider a separate budget for operations automation during or after build

 Include below functions during the Requirement Phase and/or User Story Elaboration

o KPI Reporting

o Alert Mechanism

o Auto-Monitoring

o Self-Heal

o Creation of Business Metrics dashboard

 Post Build phase, ring-fence key Devops personnel for Ops Automation activities until all

the benefits (discussed in Conclusion) are realized

REFERENCES

1. CapEx vs OpEx: Captial Expenditures & Operational Expenses explained -

https://www.bmc.com/blogs/capex-vs-opex/

2. ABC Operating expenses -

https://www.macrotrends.net/stocks/charts/AMZN/amazon/operating-expenses

3. XYZ Operating Expenses - https://www.macrotrends.net/stocks/charts/BBY/best-

buy/operating-expenses

4. 5 IT Operations Cost Traps and How to Avoid Them -

https://www.infoq.com/articles/operations-traps-avoid/

5. A process-oriented perspective of IS success: Examining the impact of IS on operational

cost - Omega Volume 34, Issue 5, October 2006

6. Kubernetes Kusto Query Language (KQL) - https://learn.microsoft.com/en-us/azure/data-

explorer/kusto/query/

7. Kubernetes Control Cheat Seat - https://kubernetes.io/docs/reference/kubectl/cheatsheet/

https://www.bmc.com/blogs/capex-vs-opex/
https://www.macrotrends.net/stocks/charts/AMZN/amazon/operating-expenses
https://www.macrotrends.net/stocks/charts/BBY/best-buy/operating-expenses
https://www.macrotrends.net/stocks/charts/BBY/best-buy/operating-expenses
https://www.infoq.com/articles/operations-traps-avoid/
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

